人类对于世界永远都保有一颗好奇心,总是试图通过各种手段打破物理限制,对远方的世界一探究竟。
早在盛唐时期,诗人王之涣便在《登鹤雀楼》里,用千古名句“欲穷千里目,更上一层楼”表达了自己对远方世界的欲望。
而在之后的年,荷兰眼镜商汉斯·利伯则因为偶然发现用两块镜片可以看清远处的景物,受启发制造了人类历史上的第一架望远镜。
望远镜能够把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变得清晰可辨。因此,望远镜成为了天文和地面观测中不可缺少的工具:天文学家观测星空的时候会用到它,早期战争中打探敌情时会用到它,现代人登高眺远的时候也会用到它。
强大的功能和用途,注定其诞生便是人来探索远方的开始。基于望远镜的变焦原理,德国人弗兰克·巴克发明了人类历史上的第一个变焦镜头ZoomarVariofocal17-53mmf/2.9。
也有人说,世界上最早成型并得到应用的变焦镜头,是德国光学家赫尔穆特·纽曼(HelmutNewman)于年为西门子公司16毫米电影机设计的25-80mmf/2.8镜头。
当然,这些都已经无从考证。不过有一定是十分肯定的,那就是无论是前者还是后者,都是为单反相机而设计的变焦镜头。而之后的很多年时间里,随着技术的不断发展和人类需要的改变,变焦镜头得到了不断的优化和改良。
变焦镜头在左,智能手机在右
变焦镜头,是通过移动镜头内部镜片来改变焦点的位置,改变镜头焦距的长短,并改变镜头的视角大小,从而实现影像的放大与缩小。焦点位置发生变化,焦距会随之发生改变:当焦点向成像面反方向移动时,焦距会变长;反之,焦距会变短。
这是一个简单的变焦镜头光学结构示意图,它采用了光学补偿法以校正焦点漂移。L1和L3是前、后两块凸透镜,其中的L3是固定的。当中间的凹透镜L2从前往后移动产生变焦效果时,凸透镜L1也向前、向后做一个抛物线运动。(图片来自维基百科)
变焦镜头最大的价值在于,在不改变拍摄距离的情况下,通过变动焦距就可以改变拍摄范围,实现了镜头焦距可按摄影者意愿变换的功能。
然而,变焦镜头虽然可以实现影像的放大与缩小,但由于变焦镜头要呈现多个焦段的影像,导致其构造比较复杂、体积相对较大。
搭载了变焦镜头的单反相机
对于单反这样的大体积来说,搭载这样一个镜头自然是没有问题的,但对于智能手机这样空间十分有限且又追求纤薄设计的移动设备而言,几乎是不可能的。所以,手机摄影出于方便和快捷考虑,大多数手机都会采用定焦镜头。
由于定焦镜头只有一个固定焦段,这也导致搭载了定焦镜头的智能手机,如果要实现变焦功能的话,就只能依靠镜组、感光元件的特殊设计了。
技术的过渡:数码变焦与超采样
那么,如何在搭载了变焦镜头的智能手机中实现变焦功能呢?很显然,不少手机厂商都选择了一个折中的方案,那就是在定焦镜头中加入数码变焦。
数码变焦名为“变焦”,但焦距实际上并没有发生改变,它是通过数码相机内的处理器,增大原画面两个像素之间的距离,然后再根据对已有像素周边的色彩进行判断,把传感器上的一部份像素使用“插值”算法放大到整个画面。
前后对比图,通过数码技术被放大的图片画质已经渣到无法直视
这种手法就如同用图像处理软件把图片的面积改大,是对像素进行有损裁剪为代价的,尽管数码变焦会利用插值等方式来改善成像质量,但图像色彩和质量却大大下降。
与数码变焦相似的还有“超采样技术”,充分利用高像素传感器,通过剪裁CMOS某个区域来实现高品质数码变焦,对画质的损耗不是很大。
超采样技术示意图
然而需要注意的是,超采样技术的本质并不是因为技术上有什么突破,而是因为目前所有拍照设备都在拼命的飙升像素。而且,和数码变焦一样,超采样技术同样与真正的光学变焦完全不搭边。
双摄变焦:一双被上帝吻过的眼睛
技术与需求向来都是双驱动的,当技术无法满足现实需要时,新的技术便会应运而生,例如随之而来的双摄变焦。
双摄变焦,就是利用手机后置双镜头的物理焦距不同,实现“广角”或“长焦”拍摄效果。
其基础首先是双摄,也就是两颗摄像头——通过加入多功能「副摄像头」的方法,实现了比单摄像头更丰富的手机拍照玩法。
需要注意的是,双摄变焦的两枚镜头本质上仍然是定焦镜头,而非变焦镜头,其所谓的变焦效果其实是利用两个镜头的物理焦距不同来实现的。
就目前市场来看,主要的双摄方案有两种:一个是“彩色+黑白”,一个是“广角+长焦”。
“黑白+彩色”双摄变焦原理图
其中,“彩色+黑白”的双摄方案利用两颗摄像头同时成像,再通过ISP后期合成。在拍摄过程中,彩色镜头负责色彩的捕捉,黑白镜头用于细节的抓拍,再通过黑白彩色双镜头结合,达到提升照片轮廓刻画等细节表现的效果。这样既保留了彩色摄像头的颜色信息,又可以保证黑白摄像头的清晰度。
图为华为P9,来自于华为
转载请注明:http://www.0431gb208.com/sjszyzl/1929.html